Ricci-Flat Holonomy: a Classification
نویسنده
چکیده
The reductive holonomy algebras for a torsion-free affine connection are analysed, with the goal of establishing which ones can correspond to a Ricci-flat connection with the same properties. Various families of holonomies are eliminated through different algebraic means, and examples are constructed (in this paper and in ‘Projective Geometry II: Holonomy Classification’, by the same author) in the remaining cases, thus solving this problem completely, for reductive holonomy.
منابع مشابه
Definite Signature Conformal Holonomy: A Complete Classification
This paper aims to classify the holonomy of the conformal Tractor connection, and relate these holonomies to the geometry of the underlying manifold. The conformally Einstein case is dealt with through the construction of metric cones, whose Riemannian holonomy is the same as the Tractor holonomy of the underlying manifold. Direct calculations in the Ricci-flat case and an important decompositi...
متن کاملProjective Geometry II: Holonomy Classification
The aim of this paper and its prequel is to introduce and classify the holonomy algebras of the projective Tractor connection. This is achieved through the construction of a ‘projective cone’, a Ricci-flat manifold one dimension higher whose affine holonomy is equal to the Tractor holonomy of the underlying manifold. This paper uses the result to enable the construction of manifolds with each p...
متن کاملProjective Holonomy II: Cones and Complete Classifications
The aim of this paper and its prequel is to introduce and classify the irreducible holonomy algebras of the projective Tractor connection. This is achieved through the construction of a ‘projective cone’, a Ricci-flat manifold one dimension higher whose affine holonomy is equal to the Tractor holonomy of the underlying manifold. This paper uses the result to enable the construction of manifolds...
متن کاملConformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds
The main result of this paper is that a Lorentzian manifold is locally conformally equivalent to a manifold with recurrent lightlike vector field and totally isotropic Ricci tensor if and only if its conformal tractor holonomy admits a 2-dimensional totally isotropic invariant subspace. Furthermore, for semi-Riemannian manifolds of arbitrary signature we prove that the conformal holonomy algebr...
متن کاملProjective Geometry II: Cones and Complete Classifications
The aim of this paper and its prequel is to introduce and classify the irreducible holonomy algebras of the projective Tractor connection. This is achieved through the construction of a ‘projective cone’, a Ricci-flat manifold one dimension higher whose affine holonomy is equal to the Tractor holonomy of the underlying manifold. This paper uses the result to enable the construction of manifolds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006